Advanced Manual
Smart Contract Audit

March 7, 2025

codearmory.io

Audit requested by

”* Gas Grass Ass Pepe
Ox5cAf08bF66f3bAC2f5086749D2459381eBd2eA3c

Vulnerability Level Total Pending Acknowledged Resolved

Contract Privilege Description

Table of Contents

1. Audit Summary
1.1 Audit scope
1.2 Tokenomics
1.3 Source Code

2. Disclaimer

3. Global Overview
3.1 Informational issues
3.2 Low-risk issues
3.3 Medium-risk issues

3.4 High-risk issues
4. Vulnerabilities Findings

5. Contract Privileges
5.1 Maximum Fee Limit Check
5.2 Contract Pausability Check
5.3 Max Transaction Amount Check
5.4 Exclude From Fees Check
5.5 Ability to Mint Check
5.6 Ability to Blacklist Check
5.7 Owner Privileges Check

6. Notes

6.1 Notes by CodeArmory
6.2 Notes by Gas Grass Ass Pepe

7. Contract Snapshot
8. Website Review

9. Certificate of Proof

Project Name Gas Grass Ass Pepe

CodeArmory was comissioned by Gas Grass Ass Pepe to perform an audit based on
the following code:

https://etherscan.io/address/0x5caf08bf66f3bac2f5086749d2459381ebd2ea3c

Note that we only audited the code available to us on this URL at the time of the audit.
If the URL is not from any block explorer (main net), it may be subject to change.
Always check the contract address on this audit report and compare it to the token
you are doing research for.

Audit Method

CodeArmory’s manual smart contract audit is an extensive methodical examination
and analysis of the smart contract’s code that is used to interact with the blockchain.
This process is conducted to discover errors, issues and security vulnerabilities in the
code in order to suggest improvements and ways to fix them.

Automated Vulnerability Check

CodeArmory uses software that checks for common vulnerability issues within smart
contracts. We use automated tools that scan the contract for security vulnerabilities
such as integer-overflow, integer-underflow, out-of-gas-situations, unchecked transfers,
etc.

Manual Code Review

CodeArmory’s manual code review involves a human looking at source code, line by line,
to vulnerabilities. Manual code review helps to clarify the context of coding decisions.
Automated tools are faster but they cannot take the developer’s intentions and general
business logic into consideration.

Used tools

- Slither: Solidity static analysis framework

- Remix: IDE Developer Tool

- CWE: Common Weakness Enumeration

- SWC: Smart Contract Weakness Classification and Test Cases
- DEX: Testnet Blockchains

Vulnerability Level Description

Risk Status Description

SWC Attack Analysis

The Smart Contract Weakness Classification Registry (SWC Registry) is an
implementation of the weakness classification scheme proposed in EIP-1470.

It is loosely aligned to the terminologies and structure used in the Common
Weakness Enumeration (CWE) while overlaying a wide range of weakness variants
that are specific to smart contracts.

ID Description Status
SWC-100 Function Default Visibility

SWC-101 Integer Overflow and Underflow
SWC-102 Outdated Compiler Version

SWC-103 Floating Pragma

SWC-104 Unchecked Call Return Value

SWC-105 Unprotected Ether Withdrawal
SWC-106 Unprotected SELFDESTRUCT Instruction
SWC-107 Reentrancy

SWC-108 State Variable Default Visibility
SWC-109 Uninitialized Storage Pointer

SWC-110 Assert Violation

SWC-111 Use of Deprecated Solidity Functions
SWC-112 Delegatecall to Untrusted Callee
SWC-113 DoS with Failed Call

SWC-114 Transaction Order Dependence
SWC-115 Authorization through tx.origin

SWC-116

SWC-117

SWC-118

SWC-119

SWC-120

SWC-121

SWC-122

SWC-123

SWC-124

SWC-125

SWC-126

SWC-127

SWC-128

SWC-129

SWC-130

SWC-131

SWC-132

SWC-133

SWC-134

SWC-135

SWC-136

Block values as a proxy for time

Signature Malleability

Incorrect Constructor Name

Shadowing State Variables

Weak Sources of Randomness from Chain Attributes
Missing Protection against Signature Replay Attacks
Lack of Proper Signature Vestion

Requirement Violation

Write to Arbitrary Storage Location

Incorrect Inheritance Order

Insuf cient Gas Grie ng

Arbitrary Jump with Function Type Variable

DoS With Block Gas Limit

Typographical Error

Right-To-Left-Override control character (U+202E)
Presence of unused variables

Unexpected Ether balance

Hash Collisions With Multiple Variable Length Arguments

Message call with hardcoded gas amount
Code With No Effects

Unencrypted Private Data On-Chain

Error Code Description

Error Code Description

Type of fee Description

Error Code Description

Privilege Check Description

Error Code Description

Privilege Check Description

Error Code Description

Privilege Check Description

Error Code Description

Privilege Check Description

Privilege Check Description

Error Code Description

Error Code Description

Privilege Check Description

Error Code Description

Notes

Notes by Gas Grass Ass Pepe

No notes provided by the team.

Notes by CodeArmory

Owner is privileged to do the first buy transaction, before transactions are open

Contract Snapshot

This is how the constructor of the contract looked at the time of auditing the smart contract.

contract Token is Context, IERCZ8Metadata, Ownable {
mapping(address => uint256) private _balances;

mapping(address => mapping(address => uint256)) private _allowances;

uint256 private _totalSupply;

string private _name;

string private _symbol,

uint® private constant _decimals = 18;

uint256 public constant presaleReserve = 60_000_088_006 * (18 ** _decimals);
uint256 public constant stakingReserve = 24_060_000_e06 * (1@ ** _decimals);
uint256 public constant marketingReserve = 56_000_880_0eE0 * (10 ** _decimals),
uint256 public constant liquidityReserve = 30_000_080_060 * (10 ** _decimals);
uint256 public constant rewardsReserve = 30_000_088_006 * (18 ** _decimals);

Q

<4 FIRST IN, FIRST WIN! PRIVATE ROUND OPEN! 4~ DON'T MISS OUT - PRIVATE ROUND IS FILLING FAST! . <4~ PRIVATE SALE SPOTS ARE LIMITED - ACT NOW!

-+ EXCLUSIVE PRIVATE ROUND LIVE NOW! - 4~ EARLY ADOPTERS ARE LOCKING IN!

Type of check Description

Certificate of Proof

® Not KYC verified by CodeArmory

Gas Grass Ass Pepe

Audited by CodeArmory.io

<« >

Date: 7 March 2025

Advanced Manual Smart Contract Audit

Disclaimer

This audit report has been prepared by CodeArmory’s experts at the request of the client.

In this audit, the results of the static analysis and the manual code review will be presented.
The purpose of the audit is to see if the functions work as intended, and to identify potential
security issues within the smart contract.

The information in this report should be used to understand the risks associated with the
smart contract. This report can be used as a guide for the development team on how the
contract could possibly be improved by remediating the issues that were identified.

CodeArmory is not responsible if a project turns out to be a scam, rug-pull or honeypot.
We only provide a detailed analysis for your own research.

CodeArmory is not responsible for any financial losses. Nothing in this contract audit is
financial advice, please do your own research.

The information provided in this audit is for informational purposes only and should not be
considered investment advice. CodeArmory does not endorse, recommend, support or
suggest to invest in any project.

CodeArmory can not be held responsible for when a project turns out to be a rug-pull,
honeypot or scam.

Codearmory.io

End of report
Smart Contract Audit

info@codearmory.io

codearmory.io

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

